
Vision Transformer Accelerator ASIC for In-Ear

Sleep Staging

by

Tristan Robitaille

Supervisor: Professor Xilin Liu
April 2024

B.A.Sc. Thesis

This page intentionally left blank.

ESC499 Engineering Science Thesis

Vision Transformer Accelerator ASIC for In-Ear Sleep Staging

Tristan Robitaille
Student number : 1006343397

Email : tristan.robitaille@mail.utoronto.ca

Supervisor: Professor Xilin Liu
Email : xilinliu@ece.utoronto.ca

April 12th, 2024

© 2024 Tristan Robitaille

Abstract

Insomnia is a wide-spread sleep disorder affecting hundreds of million of people worldwide.

New treatments are being developed to address this issue, including neuromodulation,

which aims to modify nervous activity in the brain to improve sleep quality. Effective

neuromodulation requires live, practical and accurate assessment of the user’s sleep stage.

The state-of-the-art for sleep staging involves polysomnography, which may require up

to 24 sensors, technician supervision and manual annotation by a sleep expert for the

most accurate results. Needless to say, polysomnography is not suitable for widespread,

frequent, at-home use. Wearable devices, such as in-ear sensors, may be able to provide

automatic sleep staging. In this work, we investigate the feasibility of running an AI

model in-ear via an ASIC accelerator for automatic sleep staging. This thesis present

a vision transformer-based model achieving 82.9% accuracy on the MASS SS3 dataset

with a model size of 31.59kB. It also develops an ASIC accelerator to measure the power,

area and latency cost of running such a model. The accelerator consumes 3.046mW on

average, has an area of 3.86mm2 and an inference latency of 6.97ms. The results show

that the accelerator is viable for in-ear use in all aspects except area. Further work is

suggested to reduce the power consumption and area of the accelerator by 72.2% and

54.8%, respectively.

Keywords: Sleep staging, ASIC accelerator, vision transformer, computer architecture

Note: The code is available on my GitHub repository: TristanRobitaille/engsci-thesis

i

https://github.com/TristanRobitaille/engsci-thesis

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Xilin Liu, for his guidance

and support throughout the project. He has given me the freedom to explore new ideas

and had provided me with the support and tools I needed.

I would also like to thank my father, Claude Robitaille, for letting me remotely use

his workstation to prototype the model and run the accuracy study. He has also helped

review the code for the functional simulation.

In addition, I owe much to the professors who have taught me the fundamentals of

computer architecture at the University of Toronto - Profs. Jason Anderson, Natalie

Enright-Jerger, Andreas Moshovos and Mark C. Jeffrey.

Throughout this project, I have made extensive use the Compute Canada cluster,

which has provided me with the computational resources I needed to train the model. I

would like to thank the staff at Compute Canada for their initiative. I am also appre-

ciative of the tools provided by the Canadian Microelectronics Corporation, which have

been instrumental in the hardware implementation of the accelerator.

I would also like to acknowledge the work of Professors Lisa Romkey and Alan Chong

who organized this thesis course, ensuring a structured and productive environment.

Finally, I would like to thank my family and friends for their support and encourage-

ment throughout this project. I am grateful for their patience and understanding.

ii

Contents

1 Introduction . 1

2 Problem Statement and Technical Requirements 2

3 Literature Review . 4

3.1 Machine Learning for Sleep Staging . 4

3.2 AI Accelerator Hardware . 4

3.3 Lessons From The Literature . 5

4 How to Design an AI Accelerator . 6

4.1 Model Prototyping, Data Processing and Accuracy Measurements 6

4.2 Accelerator Functional Simulation . 7

4.3 Accelerator Hardware Implementation 9

5 Vision Transformer Model Design . 11

6 ASIC Accelerator Architecture . 14

6.1 Centralized vs. Distributed Architecture 14

6.2 Data and Control Bus . 15

6.3 Master Architecture . 16

6.4 Compute-in-Memory: Architecture . 16

6.5 Compute-in-Memory: Memory . 16

6.6 Compute-in-Memory: Fixed-Point Accuracy 18

6.7 Compute-in-Memory: Compute Modules 19

6.7.1 Adder . 20

6.7.2 Multiplier . 20

6.7.3 Divider . 21

6.7.4 Exponential . 21

6.7.5 Square Root . 22

6.7.6 Multiply-Accumulate . 22

6.7.7 Softmax . 23

6.7.8 LayerNorm . 23

6.8 Clock Gating . 23

6.9 A Note About Software-Hardware Co-Design 23

7 Results: Evaluation of Performance Metrics 25

7.1 Model and Hardware Results . 25

7.2 Comparison Against the Coral Edge TPU 26

8 Results Analysis & Future Work . 27

iii

8.1 Vision Transformer Model Improvements 27

8.2 Accelerator ASIC Improvements . 28

9 Conclusion . 31

References . 32

A Appendix: Bus Operations . 35

B Appendix: Codebase Statistics . 35

C Appendix: Reflection on Learnings and Experience Gained 37

C.1 Acquired Experience . 37

C.2 Topics Warranting Further Exploration 38

C.3 Alternative Approaches for Consideration 38

iv

List of Figures

1 Three step workflow for designing an AI accelerator 6

2 Testing set accuracy for 5 randomly-selected folds as a function of epoch 8

3 Testing set accuracy as a function of dropout rate during training 8

4 High-level transformer architecture for in-situ sleep staging 12

5 Hyperparameter search results for the vision transformer model 13

6 High-level architecture of the ASIC accelerator 15

7 Architecture of the Compute-in-Memory module 17

8 Area of memory banks vs capacity for different aspect ratios 17

9 Overhead of memory as a fraction of total area for different aspect ratios 18

10 Model accuracy vs number of fractional bits in fixed-point format 19

11 Approximation error of the exponential vs Taylor series expansion order . 22

v

List of Tables

I Design goals for AI model and ASIC accelerator 3

II Training hyperparameters for vision transformer model 9

III Metrics and hyperparameters for vision transformer model 14

IV Fields of the data and control bus . 15

V Area, leakage power and cycle of the SRAM memory banks 16

VI Performance metrics of the compute modules 20

VII Principal results of the model and hardware design 26

VIII Suggested improvements to the model and their potential benefits 28

IX Suggested improvements to the ASIC accelerator and their potential benefits 29

X Bus operations and their fields . 36

XI Line and file count per file type in the codebase 37

vi

List of Abbreviations

ADC Analog-to-Digital Converter

AFE Analog Front-End

AI Artificial Intelligence

ASIC Application-Specific Integrated Circuit

BVP Blood Volume Pulse

CiM Compute-in-Memory

CMOS Complimentary Metal Oxide Semiconductor

CSV Comma-Separated Values

ECG Electrocardiography

EEG Electroencephalography

EMG Electromyography

EOG Electrooculography

FSM Finite State Machine

GSR Galvanic Skin Response

HDF5 Hierarchical Data Format 5

IP Intellectual Property

ISA Instruction Set Architecture

MAC Multiply-Accumulate

MASS Montreal Archive of Sleep Studies

MHSA Multi-Head Self-Attention

MLP Multi-Layer Perceptron

nMOS N-Channel Metal Oxide Semiconductor

PE Processing Element

PPA Power, Performance and Area

PSG polysomnography

RTL Register Transfer Level

STAGES Stanford Technology Analytics and Genomics in Sleep

TPU Tensor Processing Unit

TSMC Taiwan Semiconductor Manufacturing Company

VCD Value Change Dump

RNN Recurrent Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

vii

1 Introduction

As reported by Chaput et al. [1], insomnia impacts around 24% of Canadians adults.

Detection and classification of sleep stages, known as sleep staging, followed by neuro-

modulation has been recently found by Yoon [2] to be a promising treatment against

insomnia. The current stage-of-the-art for sleep staging involves the use of polysomnog-

raphy to measure biosignals (at least 19 sensors are required, as explained by Levin and

Chauvel [3]) and manual annotation by a sleep expert, which requires, on average, 2

hours of work [4]. This technique also does not provide neuromodulation. To address

these downsides while effectively treating insomnia, we propose an in-ear device per-

forming Electroencephalography (EEG) sensing, sleep staging and neuromodulation. To

maximize treatment potential, the device should be as small and portable as possible

such that it can be used at home.

This thesis focuses on the development of a deep learning model to perform sleep

staging and on the design of an accelerator ASIC module to perform in-situ inference

with said model. In the end, it aims to prove, by simulations, the viability of such an

accelerator in order to potentially integrate it in the in-ear device. Multiple authors [5]–

[7] have published high-accuracy results using a deep learning approach to sleep staging,

and have done so with significantly fewer sensors than polysomnography. However, these

AI models run on standard computers as software frameworks and are thus unsuitable for

a lightweight, integrated solution. Google sells small custom AI-accelerators (such as the

Coral Edge TPU) that could run these AI models, but they still consume too much power

(at least 1W, [8]) and do not readily integrate with custom neuromodulation hardware.

The proposed solution should match the accuracy of traditional polysomnography

and published models in the literature with a power consumption low enough that the

whole system can be powered for at least a full-night on a battery that fits in-ear. The

silicon area of the accelerator should allow it to fit, along with the rest of the system,

on an integrated circuit fit for integration in an earbud-type device. This document

provides an overview of the literature in both automatic sleep staging using Artificial

Intelligence (AI) and in Application-Specific Integrated Circuit (ASIC) accelerator design,

establishes technical requirements for the device, describes the model used and hardware

design, evaluates their performance and discusses improvements and future work.

1

2 Problem Statement and Technical Requirements

In light of the background of Section 1, the problem statement of this thesis is to develop

a deep learning model and an ASIC accelerator for automatic sleep staging in order to

determine whether such a system can be used in an earpiece-type device for automatic

sleep staging. The results of this thesis will guide future development in the field.

Table I indicates precise design goals and their justification, which helps guide design

decisions and development effort. For example, to reach the target model size, time will

be spent evaluating the impact of hyperparameters to find the combination that gives

the lowest size while meeting the desired accuracy. For the AI accelerator, since inference

power and clock frequency are inversely proportional, we must focus on reducing energy

per inference. From first principles, this implies reducing the amount of charge that is

displaced within the chip. Since the physical properties are locked for the target 65nm

node, we focus on reducing the number of operations, simplifying operations, limiting

data movement and reducing control logic.

To determine the average power consumption constraint, the battery capacity of the

Airpods Pro, which was found in a teardown to be 0.16Wh, can be considered as a

reference [9]. Assuming a goal of 10h of battery life (for a full night of sleep), the overall

power consumption must stay below 16mW, on average. The speaker coil driving circuitry

will consume most of the power and, leaving enough power budget for the analog front-end

and overhead in the system, in addition to a safety factor, 5mW seems like a reasonable

target for the accelerator. Regarding the target area and model size, a reasonable chip

package for this application is a 4mm x 4mm Chip-Scale Package (CSP). According to

IPC standard J-STD-012, a CSP overall area is no more than 120% of the die, which

leaves 13mm2 of die area [10]. To further contextualize, Apple’s H1 processor, which is

used in the Airpods Pro, has a similar die area of 12mm2 [11].

Again, a significant portion will be consumed by the coil driver, RISC-V processor

and memory. Therefore, a maximum area of 15%, or 2mm2, for the accelerator seems to

be a safe option. According to Liu and Kursun, the area of a standard 6T SRAM cell is

0.75µm2 [12]. To leave enough area for the compute elements, controllers and routing,

reserving 0.75mm2 of the accelerator area to weights is reasonable. This provides up to

1Mb, or 125kB, ignoring memory access overhead, for the weights of the model. Finally,

as mentioned above the accuracy should be close to published literature in this field to

provide effective treatment. For this, 80% is a reasonable goal. Current polysomnography

(PSG) divides the night in 30s “sleep epochs”. To limit too much of an offset between

the end of a 30s epoch and its predicted sleep stage (essentially a phase offset), which

would add inaccuracy to the overall system and potentially reduce its effectiveness, a

maximum phase offset of 10% (3s) is appropriate. Finally, a clock of 200MHz is a typical

upper-bound for low-power microcontroller-type systems. To avoid needing two separate

2

Table I: Design goals for AI model and ASIC accelerator

Type Goals Justification

Model
Size < 125 kB Help reach ASIC area/power goals

Accuracy > 80% Competitive with state-of-the-art

ASIC

Pavg < 5mW System to function for whole night

Atotal < 2mm2 Fit in ear (65nm node)

Tinference < 3 s Maximum phase offset of 10%

fMax > 200MHz Compatibility with rest of system

clock domains, which entails more area and power, the accelerator should be able to run

at 200MHz.

3

3 Literature Review

3.1 Machine Learning for Sleep Staging

Deep learning for sleep staging has been studied since around 2017. Broadly speaking,

basic Deep Neural Network (DNN) cames first, followed by Convolutional Neural Net-

work (CNN) and Recurrent Neural Network (RNN) [13]. The transformer is a relatively

new type of neural network based around the concept of “attention” and particularly

suited for sequence inputs since it can process the input in parallel [14]. Since its in-

troduction in 2017 [15], the transformer has been used for sleep staging tasks. Indeed,

Dai et al. developed a transformer-like model without decoders which used three input

EEG channels and achieved 87.2% accuracy on the popular SleepEDF-20 dataset [16].

Similarly, Phan et al. developed a model with a focus on outputting easily-interpretable

confidence metrics for clinicians. They found that a significant impediment to the adop-

tation of automatic sleep staging in clinics is lack of trust from clinicians as they perceive

the system to be a “black box”. Their model ingests multiple sleep epochs for each in-

ference, which allowed the team to achieve 84.9% accuracy on the SleepEDF-78 dataset.

Eldele et al. managed an accuracy of 85.6% on SleepEDF-78 using a single-channel,

single-epoch attention-based model [7].

In recent years, the accuracy of sleep staging by ML models has plateaued. In fact,

Phan et al. claim that AI-based sleep-staging in heathly patients has been solved fully as

the accuracy has reached the “almost perfect” level of Cohen’s kappa [4]. However, none

of the models presented above meet our constraints. Indeed, we require a lightweight,

single-channel, single-epoch model. Most models have more than 1M parameters [13];

even the smallest model by Eldele et al. has above 500k 32-bit float weights, which far

exceeds the 125kB constraint. Furthermore, none have been optimized to run on custom

hardware. Thus, there is a need to develop a novel lightweight transformer.

3.2 AI Accelerator Hardware

AI accelerators are a very active area of research at the moment. Significant gains in

latency and power are possible by designing hardware optimized for machine learning.

Indeed, CPUs lack in memory bandwidth and parallelism and have significant control

overhead as required to process any arbitrary program. GPUs have high cost and high

power consumption and typically have less available memory than a CPU. Hardware

(FPGA and ASICs), on the other hand, can be fast and energy efficient but suffer from

limited flexibility [17]. The first AI accelerator ASIC, publised in 2014 by Chen et al.

and named DianNao, could perform 452G 16b fixed-point computations per second [18].

It was quickly surpassed by ShiDianNao, which was 1.87x faster and used 60x less energy

[19].

4

Modern models are massive and suffer from memory access penalties. Thus, the most

optimized architectures limit data movement as much as possible by placing the compute

elements directly in memory, meaning that less charge is switched per operation (DRAM

access requires 200x more energy than on-chip memory [20]) and the overhead and bot-

tleneck effect of the data bus is drastically reduced. For example, Arora et al. describe

“CoMeFa”, a Compute-in-Memory (CiM) module for FPGA BRAM which managed to

reduce energy comsumption by 55%. They placed up to 160 single-bit processing ele-

ment per BRAM (20kbit) and perform operations in a bit-serial manner instead of the

traditional bit-parallel [21]. Similarly, Wang and colleagues presented a similar BRAM

CiM module which sped up compute by up to 2.3x at the cost of 1.8% increase in area

[22]. A high-level architecture that often uses a number of CiM is known as “dataflow”.

Unlike the traditional von Neumann architecture, it does not rely on instructions and

banks of memory cells to perform the necessary computation, but instead organizes dif-

ferent compute elements sequentially and in parallel to match a model’s architecture. For

instance, Farabet et al. present a runtime-reconfigurable dataflow architecture based on

nine pipelined “processing tiles” that can be reconfigured in ∼104-105 permutations [23].

Another area of research is concerned with the software-hardware co-design oppor-

tunities afforded by tight integration between the model and the hardware running its

inference. Ding and team describe an impressive design where both the training backprop-

agation and inference hardware are modified. By ensuring that weight matrices consist of

an array of circulant matrices, the team is able to reduce time-complexity of vector-matrix

mutliply from O(n2) to O(n log n). This technique reduced storage needs by 400x-4000x,

enabling the model to be stored in on-chip memory and reducing energy consumption by

60x-70x compared to näıve FPGA implementation [20]. Taking a different route, by de-

veloping a so-called “Block-Balanced Pruning” technique to pack a pruned weight matrix

and its index information in an FPGA BRAM, Qi et al. managed to double inference

speed compared to a GPU [24]. Another example of software-hardware co-design is the

work by Zhi et al. who developed a “Clipped staircase ReLU” activation function opti-

mized for their custom CiM processing element and use of quantized weights. Their work

consumed 5x less energy and 100x-1000x fewer memory accesses [25].

3.3 Lessons From The Literature

The literature reviews presented above offer promising design directions to help reach

the design goals. Firstly, a small model is critically missing from the literature since

even the smallest model is 16x too large for our project. Secondly, CiM and dataflow

architectures are proven techniques to decrease power consumption and offer promising

inspiration for the design of the ASIC. Finally, good software-hardware co-design should

not be overlooked as it can offer significant gains.

5

4 How to Design an AI Accelerator

This section describes the workflow used for this project, which was divided into three

main steps: model prototyping, accelerator functional simulation and accelerator hard-

ware implementation. The tools used in each step are described in the following sub-

sections. The goal is to expose progressively more layers of abstraction to make hard-

ware/software co-design and debugging easier. As can be seen in Figure 1, these three

steps allow iterations to converge on a design that meets the requirements described in

Section 2.

Figure 1: Three step workflow for designing an AI accelerator

4.1 Model Prototyping, Data Processing and Accuracy Mea-

surements

The first step in designing an accelerator is prototyping the model that the accelerator

will run. Here, we prioritize productivity of development and profiling over performance.

6

In this project, the model was developed in TensorFlow, a widely-used Python framework

maintained by Google. Its popularity implies that it has a large community of developers

and is well-documented. TensorFlow also provides a high-level API that allows for rapid

prototyping of models. Furthermore, it easily converts to TensorFlow Lite, which is

compatible with the Google Edge Tensor Processing Unit (TPU) device that will be

used as a reference point of available commercial hardware. The model was developed

in Python 3.11 and TensorFlow 2.14. The model was trained on the Montreal Archive

of Sleep Studies (MASS) SS3 dataset, which contains 62 nights of PSG recordings with

21 EEG channels [26]. The 16-bit raw PSG data was preprocessed manually with the

following steps:

• Pruning of epochs of unknown sleep stage.

• Downsampling from 256Hz to 128Hz to reduce model size and inference energy.

• Filtering with 60Hz notch filter to remove noise from AC mains coupling.

• Filtering with 0.3-100Hz bandpass filter to remove noise (as recommended in [27]).

• Offset by half of the scale to replicate the unsigned 16-bit format expected from the

Analog-to-Digital Converter (ADC) in the final hardware.

In addition, the two light sleep stages (N1 and N2) were merged into one stage to sim-

plify the model. Finally, the nights were concatenated and shuffled. All training and

hyperparameter search took place on Compute Canada’s Cedar cluster through remote

SSH access.

Accuracy against PSG ground truth was assessed through repeated 31-fold validation:

the model is trained on 60 nights and tested on the remaining two nights. The best

accuracy of 5 runs is recorded, and the process is repeated another 30 times until all pairs

of nights have been tested. The training set represents 90% of the 60 training nights. The

final accuracy is the average of the best accuracies of each validation fold. This provides

measurements that are robust against night-to-night variability in the dataset. Table II

shows the hyperparameters used for training the model. These have been empirically

determined to yield the best accuracy with reasonable training time. Figure 2 shows the

accuracy of the model as a function of the number of epochs, which is shown to converge

at around 100 epochs. Furthermore, Figure 3 indicates that a dropout rate of 30% is

optimal for this model.

4.2 Accelerator Functional Simulation

To prototype the accelerator architecture, run more accurate studies to determine the

impact of design choices and write the model in a way that can be easily translated to

7

Figure 2: Testing set accuracy for 5 randomly-selected folds as a function of epoch

Figure 3: Testing set accuracy as a function of dropout rate during training

8

Table II: Training hyperparameters for vision transformer model

Hyperparameter Value

Learning rate schedule
√
dmodel ∗min(

√
step, step/40001.5)

Initial learning rate 0.001

Batch size 16

of epochs 100

Dropout rate 30%

Class weights 1.0 ∀ {Wake, REM, N1/N2, N3/N4}
Optimizer Adam

Data downsampling 256Hz → 128Hz

Data filtering 60Hz notch → 0.3-100Hz bandpass → 16b quantization

hardware, a functional simulation was written. The simulation is written in C++ and,

with the aim of helping subsequent SystemVerilog development, uses a similar structure

to hardware coding (cycle-level parallelism, use of FSM, limited function calls). It is

organized identically to the hardware design, with a Master module that controls high-

level operation of CiM modules. It also makes use of compute modules written using the

same fixed-point format and approximation as the hardware. The functional simulation

is used to collect metrics that are more difficult to measure in high-level software or

hardware, such as the distribution of inputs to certain operations, the distribution of

intermediate results, the exact number of all types of operations, etc. This information

can be used to optimize the hardware design. Finally, it provides an easy way to validate

the operations by cross-checking each step with reference outputs from the TensorFlow

model. The only non-standard libraries used are armadillo for compute verification,

HighFive for Hierarchical Data Format 5 (HDF5) file I/O (storing model parameters

and EEG data), rapidcsv for Comma-Separated Values (CSV) file I/O (storing fixed-

point accuracy study results and layer output from the TensorFlow model) and fpm for

fixed-point math.

4.3 Accelerator Hardware Implementation

The final step in the workflow is the hardware implementation of the accelerator. The

hardware is written in SystemVerilog and uses the same structure as the functional sim-

ulation. SystemVerilog was chosen as it provides many more “quality of life” features

than plain Verilog, such as interfaces, typedefs, packages, assertions, etc., resulting in

higher-quality and more productive code. Several tools are used to design the hardware:

• Verilator: Register Transfer Level (RTL) compiler and linter.

• CocoTB: Python testbenching framework.

9

• GTKWave: Value Change Dump (VCD) waveform viewer.

• ARM Artisan Physical IP: SRAM compiler.

• Synopsys Design Compiler: Synthesis and performance evaluation tool.

The first three tools are open-source and compatible with all major operating systems,

providing a familiar, local and OS-agnostic development environment. Testbenches are

written individually for each of the compute modules discused in Section 6.7 where mul-

tiple constrained-random inputs are passed to the modules and their output is compared,

within tolerance, to a reference values computed in software. The Master and CiM mod-

ules are tested individually with a testbench that emulates the signals and timing that

each expect from the other.

The last two tools are proprietary and are used to evaluate the performance of the

design against requirements.

10

5 Vision Transformer Model Design

This section describes the architecture of the vision transformer model used in this thesis,

which is shown Figure 4. Since sleep staging as presented here is a “sequence-to-one”

problem, feedback is not applicable and thus the decoder stack present in a more tradi-

tional transformer is not needed. The patch divide step and first dense step (known as

“patch projection” in [28]) are performed as data comes in from the EEG ADC to reduce

temporary storage usage. The patch divide step splits the input into 60 patches of 64

samples. The resulting nearly square matrix helps maximize utilization of the accelerator

described in Section 6, yielding shorter inference time and lower inference energy. The

patch projection step adds a layer of learned weights to the input to allow the model

to capture more complex features from the input waveform. The projection depth is

known as “embedding depth” or d model and is a hyperparameter of the model. The

model uses an embedding depth of 64, which was determined through hyperparameter

search to yield accuracies similar to embedding depths of 32 or 128 (see Figure 5a) but

offers lower energy consumption when paired with 60 patches due to increased utiliza-

tion. This is discussed further in Section 6.9. The model then applies a learned 1D

positional embedding to the patches to allow the model to learn positional infromation of

the EEG stream. The model then applies a single encoder layer consisting of Multi-Head

Self-Attention (MHSA) and Multi-Layer Perceptron (MLP) layers. Figure 5b shows that

accuracy does not increase as more encoder layers are added, so the model uses only one

encoder layer to reduce the model size. The LayerNorm layers first normalize the inputs

to a Gaussian over the second dimension, and then scale and shift the normalized values

using learnable parameters (γ and β, respectively) with the goal of faciliting learning and

containing compute unit inputs throuh reducing covariate shift. The MHSA layer uses

a triplet of three-dimensional weights (known as “key”, “query”, “value”) to favour cer-

tain regions of the encoder input. The MHSA layer contains the majority of the weights

in the model and is the most computationally expensive part of the model. The third

dimension of the weights is known as the “number of heads”, and the model uses 8 as it

was found to yield the highest accuracy as seen in Figure 5c. The MLP head layer is a

simple parametrized sequence of dense layers. Here, a single matrix was found to yield

the highest accuracy. The final dense and softmax layers are used to map the model

output to the sleep stage classes. Finally, the model takes the window average of the

last three softmax vectors to stabilize the sleep stage noise. This addition has increased

the model’s accuracy by 2.5% and is a novel technique in sleep staging models. Table III

summarizes the hyperparameters of the model.

11

Figure 4: High-level transformer architecture for in-situ sleep staging

12

16 32 64 128

Embedding depth

0.5

0.6

0.7

0.8

0.9

1.0

V
a
li
d
a
ti
o
n
a
cc
u
ra
cy

(a) Accuracy vs. d model

1 2 3 4

Ecoder layers

0.5

0.6

0.7

0.8

0.9

1.0

V
a
li
d
a
ti
o
n
a
cc
u
ra
cy

(b) Accuracy vs. encoder layer count

4 8 16 32

Attention heads

0.5

0.6

0.7

0.8

0.9

1.0

V
a
li
d
a
ti
o
n
a
cc
u
ra
cy

(c) Accuracy vs. number of heads

16 32 64 128 256 512

Patch length

0.5

0.6

0.7

0.8

0.9

1.0
V
a
li
d
a
ti
o
n
a
cc
u
ra
cy

(d) Accuracy vs. patch length

64 128 256

Sampling frequency (Hz)

0.5

0.6

0.7

0.8

0.9

1.0

V
a
li
d
a
ti
o
n
a
cc
u
ra
cy

(e) Accuracy vs. sampling frequency

8 16 32 64

MLP dimension

0.5

0.6

0.7

0.8

0.9

1.0

V
a
li
d
a
ti
o
n
a
cc
u
ra
cy

(f) Accuracy vs. MLP dimension

Figure 5: Hyperparameter search results for the vision transformer model

13

Table III: Metrics and hyperparameters for vision transformer model

Metric Value

Input channel Cz-LER

Size (# of weights) 31,589

Sampling frequency 128 Hz

Clip length 30s

Patch length 64 samples

Embedding depth (dmodel) 64

of attention heads 8

of encoder layers 1

MLP dimension 32

MLP head depth 1

Output averaging depth 3 samples

6 ASIC Accelerator Architecture

This section describes and justifies the design of the ASIC accelerator that will run the

vision transformer model. It is split into several sections to describe the various aspects

of the accelerator. A high-level overview of the accelerator is shown in Figure 6. As can

be seen, it comprises a single Master module responsible for interfacing with the host

system, 64 so-called CiM modules that perform the actual computation and a shared bus

for data and control signals.

6.1 Centralized vs. Distributed Architecture

The first major design aspect of the accelerator is whether to use a centralized or dis-

tributed architecture. A centralized architecture has a single compute unit that performs

all operations and a set of relatively large memory banks, while a distributed architec-

ture has multiple compute units, each with their own memory. Of course, linear algebra

lends itself very well to parallelization as each Multiply-Accumulate (MAC) operation

is independent of the others. The centralized architecture is simpler to design, has less

overhead and lower area, but is much slower. It is relatively hard to accurately predict

the Power, Performance and Area (PPA) of different architectures before implementation.

However, designing a distributed architecture first can be a good starting point as it can

easy be scaled up and down to optimize the design. This is the reason this design uses a

distributed architecture.

The design uses 64 CiM to maximize Processing Element (PE) utilization of the ASIC

as mentioned in Section 6.9

14

Figure 6: High-level architecture of the ASIC accelerator

6.2 Data and Control Bus

The data and control bus is a bidirectional bus that connects the Master module and

all the CiM modules. One device may communicate at a time and each is connected to

the bus through tri-state buffers. The bus is 58 bits wide and contains different fields, as

summarized in Table IV. There are 10 different operations Op, as described in Appendix

A. The bus being directly connected to all modules allows for two important features:

broadcast and synchronization. There are two types of broadcast: dense and transpose.

Dense broadcast is used to send the same data to all CiM modules and is used during

matrix-matrix multiplications, while transpose broadcast is used to transpose the matrix

(a CiM holds a row instead of a column, or vice-versa). The CiMs are autonomous with

these operations. They do not need involvement from the Master other than to start

the broadcast. Synchronization is maintained with the START PISTOL broadcast, which

instructs the CiMs to go to the next high-level step in their Finite State Machine (FSM).

Table IV: Fields of the data and control bus

Field Width (bits) Description

Op 4 Opcode of the instruction/data

ID 6 ID of the sender or target CiM

Data 3× 16 Data (up to 3 × Q6.10)

15

6.3 Master Architecture

The Master module is responsible for interfacing with the host system. It is a simple

module that receives signals from the host microprocessor to start parameter load and

start a new inference. It also interfaces with the external memory holding the parameters

and the ADC in the EEG Analog Front-End (AFE). It is responsible for directing the

CiM to perform dense or transpose data broadcasts and for synchronizing their high-level

(step-by-step or multi-step) operations.

6.4 Compute-in-Memory: Architecture

The CiM module is the heart of the accelerator. Its architecture is presented in Figure

7. It is responsible for performing the actual computation. Each CiM module has its

own memory for intermediate results and parameters along with control logic and several

compute units needed to perform all computation in the model. The CiM module is

designed to be as autonomous as possible to limit control overhead. It follows the dataflow

model of computation, where data is passed from one step of the inference to the next

without Master involvement, unless data needs to be broadcast or transposed across CiM.

The following sections describe different aspects of the CiM module.

6.5 Compute-in-Memory: Memory

The CiM module contains two single-port memory banks: one for intermediate results and

one for model weights containing 848 and 528 words, respectively. Having two separate

banks allows for simultaneous read/write to both banks. The memory is generated by

ARM’s Artisan IP memory compiler and is a 65nm 6T SRAM cell measuring 0.525µm2.

It has an aspect ratio of 4, which, as seen in Figures 8 and 9, provides the lowest overhead

for the given capacity. The memories offer single-cycle latency. They can also be switched

into a low-power mode when not in use. Table V shows various metrics of the memory

banks for operation at 1.0V and 25◦C.

Table V: Area, leakage power and cycle of the SRAM memory banks

Metric 528 words 848 words

Area 16682.54µm2 22124.25µm2

Leakage (nominal) 0.122mW 0.173mW

Leakage (data retention) 0.0754mW 0.055mW

Cycle time 0.852ns 0.865ns

16

Figure 7: Architecture of the Compute-in-Memory module

Figure 8: Area of memory banks vs capacity for different aspect ratios

17

Figure 9: Overhead of memory as a fraction of total area for different aspect ratios

6.6 Compute-in-Memory: Fixed-Point Accuracy

All computation in the CiM module is done in fixed-point format. The model uses Q22.10

format, which has 22 integer bits (including one sign bit) and 10 fractional bits for tem-

porary results internal to the compute modules and Q6.10 for storage. This format was

chosen because it significantly reduces the area and power consumption of the accelerator

compared to floating-point format. The fixed-point format is also sufficiently accurate

for the model. To determine the accuracy of the fixed-point format, an error study was

conducted on the functional simulation. Using the fpm library, all data operations were

performed in fixed-point format. The model was ran on a randomly-selected night of

sleep data and the output was compared to the output of the TensorFlow model and

the ground truth. Figure 10 shows the error of the fixed-point format compared to the

ground truth as a function of the number of fractional bits (on a 32-bit fixed-point num-

ber). As can be seen, the accuracy peaks at 8 bits of fractional precision, only 1.0%

below the accuracy of the TensorFlow model (which uses 32-bit floating-point format).

We can also notice that accuracy drops significantly starting at 19 fractional bits. This is

because some intermediate results overflow when the numbers have less than 12 integer

bits, especially because of operations such as MAC, softmax and LayerNorm, which accu-

mulate numbers over a length of 64. One limitation of the fpm library is that it can only

represent numbers with a total bit count of 4, 8, 16, 32 or 64 bits, so the ideal number

of integer bits cannot precisely be determined. Although the ideal number of fractional

bits is 8, the design uses 10 fractional bits to provide a small margin of error and guard

against divides by zero with other input nights.

18

Figure 10: Model accuracy vs number of fractional bits in fixed-point format

6.7 Compute-in-Memory: Compute Modules

This section describes the design and performance metrics of the various compute Intellectual

Property (IP) modules used in the design. Each is custom-designed for this project. Each

module works with signed (2’s complement) fixed-point representation. To avoid over-

flow, the modules use internal temporary variables of fixed-point format Q22.10. Table

VI shows the performance metrics of the compute modules. The working principles of

each modules is described briefly in subsequent sections.

Note that all measurement in Table VI are given for standard 65nm Taiwan Semi-

conductor Manufacturing Company (TSMC) process. To determine these metrics, the

following methodology was used with Synopsys Design Compiler 2017.09 running on

UofT’s EECG cluster:

• Area: Synthesis with the area optimization effort set to high, and the area was

extracted from the report area command report.

• Cycle/op: The latency was observed when running a single operation on a pre-

synthesis simulation.

• Energy/op: A single-instance testbench running 1000 operations was designed, and

a .saif file was generated from the VCD dump file of the testbench using Syn-

opsys’ vcd2saif utility. This provides an average activity factor for each node,

yielding an accuracy that is adequate for this discussion. The energy per operation

was calculated by normalizing the total energy used by the number of operations

performed in the testbench.

19

Table VI: Performance metrics of the compute modules

Module Area Cycle/op Energy/op Leakage power Fmax

Adder 450.4µm2 1 0.99pJ 11.87µW 6.67GHz

Multiplier 3535.2µm2 1 7.05pJ 90.50µW 1.59GHz

Divider 1719.9µm2 35 23.44pJ 34.56µW 1.11GHz

Exponential 2442.2µm2 24 62.73pJ 47.10µW 7.14GHz

Square Root 1325.2µm2 21 18.32pJ 26.30µW 0.758GHz

MAC1 — 386 820.20pJ — —

MAC2 3129.8µm2 391 839.32pJ 69.40pJ 2.17GHz

MAC3 — 456 941.68pJ — —

Softmax 2341.1µm2 2024 1972.5pJ 51.47µW 1.20GHz

LayerNorm 3836.89µm2 1469+494 1705.7pJ 78.39µW 0.877GHz

Total 18780.69µm2 N/A N/A 409.59µW 0.758GHz
1 No activation function applied
2 Linear activation function applied
3 Swish activation function applied

• Leakage power: Synthesis with the power optimization effort set to high, and the

leakage power was extracted from the report power command report.

• Fmax: The report timing command was used to determine the maximum fre-

quency of the design.

It must be noted that the measurements for all composite compute units (i.e. units

that make use of shared resources) exclude the area/power/etc. of the shared resources.

Including them would result in misleadingly high figures, given that they are explictly de-

signed to share resources. The total area of the CiM provides figures more representative

of this integration.

6.7.1 Adder

The adder is a single-cycle, combinational module that adds two fixed-point numbers.

It uses a ripple-carry adder architecture. The adder has a latency of 1 cycle, which

simplifies the logic that uses it. It also provides an overflow flag. To reduce dynamic

power consumption, the adder only updates its output when the refresh signal is high.

6.7.2 Multiplier

The multiplier is very similar to the adder. One difference is that it uses Gaussian

rounding (also known as banker’s rounding). This method rounds up or down in an

alternating fashion. This reduces the bias in the output that is commonly observed

20

with standard rounding methods, which is particularly important in MAC or LayerNorm

operations where the error can accumulate. The multiplier also has a latency of 1 cycle

and provides an overflow flag. Like the adder, the multiplier only updates its output

when the refresh signal is high.

6.7.3 Divider

The divider is more complicated than the adder and multiplier. It performs bit-wise

long-division and has a latency of N+Q+3 cycles, where N is the number of integer bits

and Q is the number of fractional bits. The divider also provides flags for overflow and

divide-by-zero and done/busy status signals. The module start division on an active-high

pulse of the start signal and provides the result when the done signal is high.

6.7.4 Exponential

The exponential module computes the natural exponential, ex, of a fixed-point number

x. It uses a combination of the identities of exponentials and a Taylor series approxi-

mation around zero to compute the exponential. Specifically, the module transforms the

exponential as such:

ex = 2
x

ln(e) = 2z = 2⌊z⌋2z−⌊z⌋ (1)

The module can then easily compute 2⌊z⌋ as an inexpensive bit-shift operation and 2z−⌊z⌋

as a Taylor series approximation. To determine a reasonable number of terms to use for

the Taylor series expansion, an accuracy study was ran. Figure 11 shows the relative

error of the exponential module as a function of the order of the Taylor series expansion

for both fixed-point (Q22.10) approximation and float (64-bit) approximation. As can

be seen, the error decreases with an increase in the order of the expansion. However,

for the fixed-point approximation, it converges to a minimum error of 0.992%. This is

because the quantization of fixed-point dominates the Taylor series error. Therefore,

using a 3rd order Tarlor series expansion to approximate the exponential function is a

good balance between accuracy and latency/energy. Note that this error was measured

over the input range of [-4, 4]. According to the functional simulation, this corresponds

to roughly ±3 standard deviations from the mean of inputs to the exponential function.

To further speed up the computation, the exponential module uses a lookup table to

store the Taylor series coefficients as well as 1/ln(e). To reduce area, the exponential

module does not instantiate its own adder and multiplier modules. Rather, it accesses

the adder and multiplier modules in the CiM module shared with other compute units.

The latency is 24 cycles.

21

0 2 4 6 8

Order of Taylor series expansion

10−7

10−5

10−3

10−1

R
el
a
ti
v
e
er
ro
r

Float approx.

Fixed-point approx.

Figure 11: Approximation error of the exponential vs Taylor series expansion order

6.7.5 Square Root

The square root module computes the square root of a fixed-point number using an itera-

tive algortihm. It has a latency of (N+Q)//2+1 cycles, where // denotes integer division.

The module provides flags for overflow and negative radicand and start/busy/done sig-

nals. The module starts computation on an active-high pulse of the start signal and

provides the result when the done signal is high.

6.7.6 Multiply-Accumulate

The MAC module performs a vector dot-product for a given pair of base addresses for the

data and length of the vector and applies a selectable activation function to the result.

Similarly to the exponential module, it uses shared adder, multiplier, divider and expo-

nential modules in the CiM module. It can implement three activation functions: none,

linear and Swish. As reported by Ramachandran et al, Swish is similar to SiLU and helps

resolve the vanishing gradient problem in backpropagation, leading to a higher accuracy

for a given number of training epochs [29]. For a nominal length of 64 (which corresponds

to the embedding depth of the model, a very common value for matrix dimensions in the

model) and Q22.10 format, the latencies are 386, 391 and 456, respectively. Note that,

although the Swish activation function comprises a divider operation, the MAC compute

latency can still be kept fairly short because the divisor is the same for all elements.

The module can thus perform the division once and multiply by the inverse, which is a

single-cycle operation. Finally, the MAC module can be directed to choose the second

22

vector from weights or intermediate results memory.

6.7.7 Softmax

The softmax module computes the softmax function of a vector of fixed-point numbers.

Similarly to the MAC module, it uses shared adder, mulitplier, divider and exponential

modules and provides busy and done signals. For a 64-element Q22.10 vector, the latency

is 2024 cycles. This is significantly longer than other vector compute modules such as

the MAC because, in the softmax operation, each element is exponantiated individually.

6.7.8 LayerNorm

The final compute module is the LayerNorm module. It computes the Layer Normal-

ization of a vector of fixed-point numbers. As described in section 5, the LayerNorm

operation consists of a normalization of the vector on the horizontal dimension followed

by scaling and shifting using learnable parameters on the vertical dimension. Because

each CiM module stores one vector at a time, the LayerNorm operation must be sepa-

rated into two stages with a matrix transpose broadcast between the two. The latency

for the first half is 1469 cycles and the latency for the second half is 494 cycles. The

module provides busy and done signals and is controlled with a half-select and start

pulse signals. Because the length of the vector is constrained to be a power of two, the

module uses bit-shifting instead of division for the normalization operation to decrease

latency and energy per operation.

6.8 Clock Gating

This design makes use of clock gating, which is a technique to reduce dynamic power

consumption by disabling the clock signal to modules that are not in use. This is handled

automatically by the Synopsys Design Compiler tool.

6.9 A Note About Software-Hardware Co-Design

To maximize utilization (and thus time- and physical efficiency) and reduce latency (thus

reducing inference energy), the model and accelerator were designed together. An exam-

ple of this software-hardware co-design concerns the number of CiM in the accelerator.

Most weights and intermediate results matrices have at least one dimension that is 61

(number of patches + classification token) or 64 (embedding depth of the model). With

64 CiMs, all vector operations can be computed simulatenously, avoiding extra overhead

for control and data movement while limiting the amount of unused silicon. This is the

main reason behind the choice of 64 samples for the patch length, which also yields 60

patches per sleep epoch. Furthermore, the embedding depth of the model is a power

23

of 2, meaning that all divisions (such as in the LayerNorm) with this number can be

accomplished with inexpensive bit shifts.

24

7 Results: Evaluation of Performance Metrics

7.1 Model and Hardware Results

This Section presents and discusses the most salient aggregate high-level results of the

model and hardware design as shown in Table VII. It can be seen that the model meets

the requirements summarized in Table I. Indeed, the model size (63.18kB) is below the

125kB constraint, and the accuracy (82.9%) is higher than the 80% target. It is also

nearly 32× smaller than the smallest state-of-the-art model for automatic sleep staging

presented by Eldele et al., which has 500,000 32-bit floating point parameters [7].

The ASIC accelerator meets some of the requirements. The inference latency (6.97ms)

is well below the maximum allowed latency of 3s. The PE utilization (50.8%) of the

accelerator suggests that there is non-negligible time overhead (mostly from inter-CiM

communication) that could be reduced in future work. The PE utilization computes the

amount of time that any one compute module is busy or refreshing its output relative to

the total inference time. The toral area is 3.86mm2, which is above the target of 2mm2.

The effective power of 3.046 mW is below the ceiling of 5mW.

The effective total power considers the effects of power gating, which is a common

technique used in modern processors to reduce power consumption. The idea is to turn

off power to the ASIC accelerator when it is not in use through one or more low-side

N-Channel Metal Oxide Semiconductor (nMOS) transistor (known as a “sleep transis-

tor”). Investigating this technique for 65nm Complimentary Metal Oxide Semiconduc-

tor (CMOS) technology, Sathanur et al. found that leakage power can be reduced by up

to 95% using power gating [30]. The effective total power is calculated as the sum of

the average dynamic power from inference energy and the leakage power pro-rated with

power gating. It assumes a sleep epoch duration of 30s. The average dynamic power is

computed for an inference with the techniques of analyzing a VCD file as described in

Section 6.

With an inference latency of 6.97ms and a sleep epoch duration of 30s, the ASIC

accelerator only runs for 0.0232% of the time, meaning that the effective leakage power

is reduced by up to 94.98%, reducing the effective leakage power to 2.947mW. The

accelerator consumes a total of 63.07mW during inference, which brings the effective

power consumption to 3.046mW with power gating. The energy per inference is 433.29µJ.
The fmax is 758MHz, which is above the target of 200MHz. This gives us ample leeway

to modify the design to reduce power consumption or area further. The fmax is limited

by the multiplier module as shown in Table VI.

25

Table VII: Principal results of the model and hardware design

Metric Value Meets requirement?

31-fold accuracy 82.9% Yes

of parameters 31,589 Yes

Size 63.18kB Yes

Inference latency 6.87ms Yes

Area 3.86mm2 No

PE utilization 50.8% N/A

Leakage power 56.48mW N/A

Average dynamic power 6.59mW N/A

Effective total power 3.046mW Yes

Energy/inference 433.29µJ N/A

fMax 758MHz Yes

7.2 Comparison Against the Coral Edge TPU

The Coral Edge TPU is a low-power USB accelerator designed by Google optimized for

inference. It consumes up to 2W and can process up to 4TOPS [8]. It represents one

of the AI accelerator with the lower power consumption available in the market, and as

such is a good reference point for comparison. The TensorFlow model was converted to

a TensorFlow Lite model and run 2000 times on the Coral Edge TPU to compare the

results. The mean inference time was 0.754ms with a standard deviation of 0.038ms.

Although the Coral Edge TPU is faster than the ASIC accelerator, it consumes too much

power to be used for this project. Furthermore, the integrated circuit measures roughly

5mm by 5mm, which is too large for the target application. It also doesn’t not readily

integrate with the rest of the system, such as the AFE for sensing, the external memory

for weight storage or the neuromodulation coil driver.

26

8 Results Analysis & Future Work

Based on the design and results discussions of Sections 5, 6 and 7, the design as presented

is not recommended to be used further for the sleep staging earpiece project. This section

discusses suggested improvements and future work to maximize the utility of this project.

Tables VIII and IX summarize the suggested improvements and attempts to quantify their

benefits wherever reasonable.

8.1 Vision Transformer Model Improvements

The vision transformer can be improved in different ways, from training to simplification

of operations. Firstly, the model could be pre-trained on the Stanford Technology An-

alytics and Genomics in Sleep (STAGES) dataset [31], which contains PSG recordings

from 1500 patients, significantly more than the 62 nights available in the dataset (MASS

SS3 [26]) currently used. Although MASS is widely used for model benchmarking, it is

worthwhile to try pre-training the model on STAGES and perform transfer learning and

k-fold validation on the MASS dataset. In addition, the model should be trained and

validated on the Expanded Sleep-EDF dataset, which is the most widely used dataset in

the literature [32]. Once the annotated EEG data measured in-ear is available, the model

will need to be trained on the new dataset. Weight pruning could further reduce the size

of the model. Pruning consists of eliminating a subset of weights to reduce model size and

compute with minimal loss of accuracy at the cost of more complicated control logic. In

some cases, pruning may also increase accuracy. Indeed, Chen et al. applied 50% prun-

ing on DeiT-Small, a vision transformer model, and observed a 0.28% accuracy boost.

Furthemore, it would be beneficial to eliminate the γ and β learned parameters used

to scale and shift the normalized values in the LayerNorm steps. These add six broad-

cast transpose operations to the inference, which represents 9.69% of the total inference

time and effective total power. Finally, it would be beneficial to explore an architecture

that uses more than one EEG electrode or different input signals such as heartrate or

temperature as a means of increasing accuracy further. Most models in the literature

use 2-5 electrodes [33], [34]. This improvement is particularly relevant given the ear-

bud form factor which can accommodate multiple contact eletrodes and other biosignals.

Indeed, in the summer of 2023, Apple was granted a patent for an in-ear “biosignal sens-

ing device” covered with different types of electrodes such as Electromyography (EMG),

Electrooculography (EOG), Electrocardiography (ECG), Blood Volume Pulse (BVP) and

Galvanic Skin Response (GSR) [35]. This modification will undoubtedly increase the area

and latency, and an evaluation of whether the potential increase in accuracy is worth it

should be performed.

It would also be important to rewrite the model in efficient C code and run on a

microcontroller to determine how far from targets a firmware approach might be. Multiple

27

Table VIII: Suggested improvements to the model and their potential benefits

Improvement Accuracy ∆ Latency ∆ Area ∆

STAGES and Expanded Sleep-EDF Unknown No change No change

Weight pruning Unknown ↓ ↓
γ and β elimination Unknown 0.666ms/-9.69% No change

Additional channels and electrodes ↑ ↑ ↑

authors have published relevant work for the RISC-V Instruction Set Architecture (ISA),

such as an extension to handle vector operations [36] or compilation support for a RISC-

V + CGRA heteregenous architecture [37]. Running the model on a microprocessor

would save the significant development and verification effort of an ASIC accelerator

and allow for a more flexible design since the model could be changed with a firmware

update. However, the power consumption and area of a vector- or CGRA-augmented

microcontroller might be higher than the ASIC accelerator.

8.2 Accelerator ASIC Improvements

The bulk of suggested improvements to this project are in the hardware design. It can

be made much smaller and more power-efficient. The first recommendation is to use a

centralized architecture for the memory. This will save significant area and leakage power

mainly from the reduction of memory overhead and deduplication of area dedicated to

storing addresses. Specifically, for centralizing memory alone, Figure 9 shows that, using

two banks holding 15,794 words (enough to contain the full model) and 4 banks for the

intermediate results will reduce the memory overhead from 49.5% (weighted average of

the overhead of the parameters memory and the weights memory in the current CiM ar-

chitecture) to 12.0%, saving 0.931mm2. The total leakage will also decrease by 13.75mW.

Centralizing the memory will also slightly reduce the inference latency since some com-

pute elements that operate on two intermediate results, such as some configurations of

the MAC will be able to load the data in parallel. However, this reduction is expected to

be small.

The second recommendation is to use a centralized compute architecture with a single

instance of each of the compute elements of Section 6.7. According to Table VI, this will

save 1.183mm2 of area and 25.80mW of leakage power. The dynamic power will also

decrease slightly due to reduction in wiring, although an exact figure is hard to estimate

without an implemented design. Although inference time will increase, it will remain far

under the requirement of 3s. In fact, the inference time is expected to be less than 64 times

longer than the distributed architecture. Indeed, as mentionned in Section 7, the CiM

spends roughly 50.8% percent of its time in compute. The rest is mainly data broadcast.

28

In data broadcast, the majority of the time (4/7 cycles) is spent waiting for data from

the single-port memory. With the centralized memory banks and a careful addressing

scheme, the inference time is expected to increase by 64× (1− 0.508 ∗ 4/7) = 45.42× or

0.312s.

The complete centralization of the memory and compute will eliminate the need for

the bus. This will save area and power, although the exact amount is hard to estimate

without an implemented design. Finally, it may be interesting to explore the impact of

using a different Q format for the weights and intermediate results at different layers in

the model. The current design uses a constant Q6.10 format for stored data. It may

be possible to use fewer bits overall if the Q format can be changed during inference

for layers that are known to produce large numbers. This can save storage area and

shrink the compute units; however, it will increase the complexity of the control logic

and require storing the Q format to use for each layer. The net impact is hard to estimate

without a design, and is expected to be fairly small so this recommendation should not

be prioritized. For this, the functional simulation of the accelerator should be extended

to perform the study. Shifting away from the fpm library to a more flexible fixed-point

library or writing one from scratch to properly emulate non-powers-of-two bitwidths will

be necessary to implement this change.

A key insight from Section 7 is that the leakage power represents 96.7% of the effective

power consumption. A key factor to reducing effective power consumption is power gating

agressiveness. To reduce effective power consumption further and extend battery life of

the final device, the power gating investigation of [30] should be extended to further

reduce leakage, perhaps by cascoding sleep transistors or adjusting their body bias to

shift their threshold voltage and reduce subthreshold leakage. Stacking transistors will

reduce fMax and increase dynamic energy given the increase in capacitance, but given

that both these metrics are well below their constraints, this is acceptable. Cascoding

sleep transistors will also increase area, although this is expected to a minor increase.

Table IX: Suggested improvements to the ASIC accelerator and their potential benefits

Improvement Dyn. energy ∆ Leakage ∆ Latency ∆ Area ∆

Centralized memory Slight ↓ -13.75 mW Slight ↓ -0.931mm2

Centralized compute Slight ↓ -25.80mW +0.305s -1.183mm2

Bus elimination Slight ↓ Slight ↓ No change Slight ↓
Optimize Q format Indeterminate Indeterminate Indeterminate Indeterminate

Power gating Slight ↑ Significant ↓ Slight ↑ Slight ↑

With the quantified suggested improvements, the leakage power of the ASIC would

be reduced from 56.48mW to 16.93mW. Ignoring improvements to power gating, this

reduces the effective power consumption from 3.046 mW to 0.848mW, a 72.2% reduction.

29

The area would decrease from 3.86mm2 to 1.746mm2, a 54.8% reduction, which brings

the total area to just under the objective of 2mm2.

Section 7 has shown that the current design is not suitable for the sleep staging ear-

piece project as is. However, there is a clear path forward to designing an AI accelerator

with significantly reduced power consumption and area, which are the two most important

metrics for the earpiece project.

30

9 Conclusion

This thesis has presented a vision transformer-based model for automatic sleep staging

and an ASIC accelerator to run the model. This work is part of a larger project aimed at

developing an in-ear device capable of acoustic neuromodulation to treat insomnia, which

requires live, accurate and practical sleep staging. The model achieved 82.9% accuracy

on the MASS SS3 dataset using a single EEG input and has a size of 31,589 parameters.

The ASIC accelerator consumes 3.046mW on average, has an area of 3.86mW2 and an

inference latency of 6.97ms. The results show that performing sleep staging in-ear is not

only possible but also practical. The model meets all the requirements summarized in

Table I, except for the area of the accelerator. Future work should focus on reducing the

power consumption and area of the accelerator. Centralizing compute and memory can

reduce power consumption and area by 72.2% and 54.8%, respectively. It is also advised

to investigate running the model on a RISC-V processor with vector extension or CGRA

add-on for additional flexibility and decreased development risk and timeline.

31

References

[1] Jean-Philippe Chaput, Jessica Yau, Deepa P. Rao, et al. “Prevalence of insomnia for Canadians

aged 6 to 79”. In: Health Reports 29.12 (2018).

[2] Ho-Kyoung Yoon. “Neuromodulation for Insomnia Management”. In: Sleep Medicine and Psy-

chophysiology 28.1 (2021), pp. 2–5.

[3] Jessica Vensel Rundo and Ralph Downey. “Chapter 25 - Polysomnography”. In: Clinical Neuro-

physiology: Basis and Technical Aspects. Ed. by Kerry H. Levin and Patrick Chauvel. Vol. 160.

Handbook of Clinical Neurology. Elsevier, 2019, pp. 381–392. doi: https://doi.org/10.1016/

B978-0-444-64032-1.00025-4. url: https://www.sciencedirect.com/science/article/

pii/B9780444640321000254.

[4] Huy Phan and Kaare Mikkelsen. “Automatic sleep staging of EEG signals: recent development,

challenges, and future directions”. In: Physiological Measurement 43.4 (2022), 04TR01.

[5] Micheal Dutt, Surender Redhu, Morten Goodwin, et al. “SleepXAI: An explainable deep learn-

ing approach for multi-class sleep stage identification”. In: Applied Intelligence 53.13 (2023),

pp. 16830–16843.

[6] Mingyu Fu, Yitian Wang, Zixin Chen, et al. “Deep learning in automatic sleep staging with a

single channel electroencephalography”. In: Frontiers in Physiology 12 (2021), p. 628502.

[7] Emadeldeen Eldele, Zhenghua Chen, Chengyu Liu, et al. “An attention-based deep learning ap-

proach for sleep stage classification with single-channel EEG”. In: IEEE Transactions on Neural

Systems and Rehabilitation Engineering 29 (2021), pp. 809–818.

[8] USB Accelerator datasheet. Version 1.4. Coral. 2019. url: https://coral.ai/static/files/

Coral-USB-Accelerator-datasheet.pdf.

[9] Jeff Suovanen. Airpods Pro Teardown. Tech. rep. Ifixit, 2019.

[10] Implementation of Flip Chip and Chip Scale Technology. Joint Industry Standard, 1996.

[11] Ramish Zafar. AirPods 2 Teardown: H1 Chip With Bluetooth 5.0, Same Batteries, and Water-

Repellent Coating on Charging Case Board. Tech. rep. Wccftech, 2019.

[12] Zhiyu Liu and Volkan Kursun. “Characterization of a novel nine-transistor SRAM cell”. In: IEEE

transactions on very large scale integration (VLSI) systems 16.4 (2008), pp. 488–492.

[13] Huy Phan, Kaare Mikkelsen, Oliver Y Chén, et al. “Sleeptransformer: Automatic sleep staging

with interpretability and uncertainty quantification”. In: IEEE Transactions on Biomedical En-

gineering 69.8 (2022), pp. 2456–2467.

[14] Kai Han, Yunhe Wang, Hanting Chen, et al. “A survey on vision transformer”. In: IEEE trans-

actions on pattern analysis and machine intelligence 45.1 (2022), pp. 87–110.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. “Attention is all you need”. In: Advances in

neural information processing systems 30 (2017).

[16] Yang Dai, Xiuli Li, Shanshan Liang, et al. “MultiChannelSleepNet: A Transformer-based Model

for Automatic Sleep Stage Classification with PSG”. In: IEEE Journal of Biomedical and Health

Informatics (2023).

[17] Yunxiang Hu, Yuhao Liu, and Zhuovuan Liu. “A survey on convolutional neural network accel-

erators: GPU, FPGA and ASIC”. In: 2022 14th International Conference on Computer Research

and Development (ICCRD). IEEE. 2022, pp. 100–107.

32

https://doi.org/https://doi.org/10.1016/B978-0-444-64032-1.00025-4
https://doi.org/https://doi.org/10.1016/B978-0-444-64032-1.00025-4
https://www.sciencedirect.com/science/article/pii/B9780444640321000254
https://www.sciencedirect.com/science/article/pii/B9780444640321000254
https://coral.ai/static/files/Coral-USB-Accelerator-datasheet.pdf
https://coral.ai/static/files/Coral-USB-Accelerator-datasheet.pdf

[18] Tianshi Chen, Zidong Du, Ninghui Sun, et al. “Diannao: A small-footprint high-throughput accel-

erator for ubiquitous machine-learning”. In: ACM SIGARCH Computer Architecture News 42.1

(2014), pp. 269–284.

[19] Zidong Du, Robert Fasthuber, Tianshi Chen, et al. “ShiDianNao: Shifting vision processing closer

to the sensor”. In: Proceedings of the 42nd Annual International Symposium on Computer Archi-

tecture. 2015, pp. 92–104.

[20] Caiwen Ding, Siyu Liao, Yanzhi Wang, et al. “Circnn: accelerating and compressing deep neural

networks using block-circulant weight matrices”. In: Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture. 2017, pp. 395–408.

[21] Aman Arora, Tanmay Anand, Aatman Borda, et al. “CoMeFa: Compute-in-Memory Blocks for

FPGAs”. In: 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM). IEEE. 2022, pp. 1–9.

[22] Xiaowei Wang, Vidushi Goyal, Jiecao Yu, et al. “Compute-capable block RAMs for efficient deep

learning acceleration on FPGAs”. In: 2021 IEEE 29th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM). IEEE. 2021, pp. 88–96.

[23] Clément Farabet, Yann Lecun, Koray Kavukcuoglu, et al. “Large-Scale FPGA-Based Convolu-

tional Networks”. In: Scaling up Machine Learning: Parallel and Distributed Approaches. Ed. by

Ron Bekkerman, Mikhail Bilenko, and JohnEditors Langford. Cambridge University Press, 2011,

pp. 399–419. doi: 10.1017/CBO9781139042918.020.

[24] Panjie Qi, Yuhong Song, Hongwu Peng, et al. “Accommodating transformer onto FPGA: Coupling

the balanced model compression and fpga-implementation optimization”. In: Proceedings of the

2021 on Great Lakes Symposium on VLSI. 2021, pp. 163–168.

[25] Ruoyu Zhi, Ryan Jurasek, Wolfgang Hokenmaier, et al. “Opportunities and Limitations of in-

Memory Multiply-and-Accumulate Arrays”. In: 2021 IEEE Microelectronics Design & Test Sym-

posium (MDTS). IEEE. 2021, pp. 1–6.

[26] CEAMS. SS3 Biosignals and Sleep stages. Version V1. 2022. doi: 10.5683/SP3/9MYUCS. url:

https://doi.org/10.5683/SP3/9MYUCS.

[27] Akara Supratak, Hao Dong, Chao Wu, et al. “DeepSleepNet: A model for automatic sleep stage

scoring based on raw single-channel EEG”. In: IEEE Transactions on Neural Systems and Reha-

bilitation Engineering 25.11 (2017), pp. 1998–2008.

[28] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et al. “An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv 2020”. In: arXiv preprint arXiv:2010.11929

(2010).

[29] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation functions”. In:

arXiv preprint arXiv:1710.05941 (2017).

[30] A Sathanur, Andrea Calimera, Antonio Pullini, et al. “On quantifying the figures of merit of power-

gating for leakage power minimization in nanometer CMOS circuits”. In: 2008 IEEE International

Symposium on Circuits and Systems. IEEE. 2008, pp. 2761–2764.

[31] Guo-Qiang Zhang, Licong Cui, Remo Mueller, et al. “The National Sleep Research Resource:

towards a sleep data commons”. In: Journal of the American Medical Informatics Association

25.10 (2018), pp. 1351–1358.

[32] PhysioToolkit PhysioBank. “Physionet: components of a new research resource for complex phys-

iologic signals”. In: Circulation 101.23 (2000), e215–e220.

33

https://doi.org/10.1017/CBO9781139042918.020
https://doi.org/10.5683/SP3/9MYUCS
https://doi.org/10.5683/SP3/9MYUCS

[33] Lan Zhuang, Minhui Dai, Yi Zhou, et al. “Intelligent automatic sleep staging model based on

CNN and LSTM”. In: Frontiers in Public Health 10 (2022), p. 946833.

[34] Huy Phan, Oliver Y Chén, Minh C Tran, et al. “XSleepNet: Multi-view sequential model for

automatic sleep staging”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

44.9 (2021), pp. 5903–5915.

[35] Erdrin Azemi, Ali Moin, Anuranjini Pragada, et al. “Biosignal Sensing Device Using Dynamic

Selection of Electrodes”. US20230225659A1. 2023.

[36] Matteo Perotti, Matheus Cavalcante, Nils Wistoff, et al. “A “New Ara” for vector computing: an

open source highly efficient RISC-V V 1.0 vector processor design”. In: 2022 IEEE 33rd Interna-

tional Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE.

2022, pp. 43–51.

[37] Xiaoyi Ling, Takahiro Notsu, and Jason Anderson. “An Open-Source Framework for the Gener-

ation of RISC-V Processor + CGRA Accelerator Systems”. In: 2021 24th Euromicro Conference

on Digital System Design (DSD). 2021, pp. 35–42. doi: 10.1109/DSD53832.2021.00015.

34

https://doi.org/10.1109/DSD53832.2021.00015

A Appendix: Bus Operations

This section details the instructions that can be performed on the bus in more details

than is warranted in the main body of the thesis. Table X describes each instruction

along with the fields on the bus.

B Appendix: Codebase Statistics

It may be interesting to the reader to appreciate the size of the codebase needed to

develop a project of similar scale. The code for this project is available in my GitHub

repository. The following table provides a breakdown of the number of lines of code in

the project.

In addition, there have been 209 commits to the repository.

35

https://github.com/TristanRobitaille/engsci-thesis
https://github.com/TristanRobitaille/engsci-thesis

T
ab

le
X
:
B
u
s
op

er
at
io
n
s
an

d
th
ei
r
fi
el
d
s

O
p
co
d
e

D
es
cr
ip
ti
on

S
en
d
er

I
D

D
a
t
a
[
0
]

D
a
t
a
[
1
]

D
a
t
a
[
2
]

N
O
P

N
o
in
st
ru
ct
io
n

A
ll

-
-

-
-

P
A
T
C
H
L
O
A
D
B
R
O
A
D
C
A
S
T
S
T
A
R
T
O
P

S
ta
rt

lo
ad

in
g
an

E
E
G

p
at
ch

M
as
te
r

0-
63

t
x
a
d
d
r

L
en
gt
h

r
x
a
d
d
r

P
A
T
C
H
L
O
A
D
B
R
O
A
D
C
A
S
T
O
P

E
E
G

p
at
ch

d
at
a

C
iM

0-
63

D
at
a

D
at
a

D
at
a

D
E
N
S
E
B
R
O
A
D
C
A
S
T
S
T
A
R
T
O
P

S
ta
rt

d
en
se

b
ro
ad

ca
st

M
as
te
r

0-
63

t
x
a
d
d
r

L
en
gt
h

r
x
a
d
d
r

D
E
N
S
E
B
R
O
A
D
C
A
S
T
D
A
T
A
O
P

D
en
se

b
ro
ad

ca
st

d
at
a

C
iM

0-
63

D
at
a

D
at
a

D
at
a

P
A
R
A
M
S
T
R
E
A
M
S
T
A
R
T
O
P

S
ta
rt

st
re
am

in
g
w
ei
gh

ts
M
as
te
r

0-
63

t
x
a
d
d
r

L
en
gt
h

-

P
A
R
A
M
S
T
R
E
A
M
O
P

W
ei
gh

t
d
at
a

M
as
te
r

0-
63

D
at
a

D
at
a

D
at
a

T
R
A
N
S
B
R
O
A
D
C
A
S
T
S
T
A
R
T
O
P

S
ta
rt

tr
an

sp
os
e
b
ro
ad

ca
st

M
as
te
r

0-
63

t
x
a
d
d
r

L
en
gt
h

-

T
R
A
N
S
B
R
O
A
D
C
A
S
T
D
A
T
A
O
P

T
ra
n
sp
os
e
d
at
a
b
ro
ad

ca
st

C
iM

0-
63

D
at
a

D
at
a

D
at
a

P
I
S
T
O
L
S
T
A
R
T
O
P

C
iM

to
ex
ec
u
te

n
ex
t
st
ep

M
as
te
r

-
-

-
-

I
N
F
E
R
E
N
C
E
R
E
S
U
L
T
O
P

C
on

ta
in
s
in
fe
rr
ed

sl
ee
p
st
ag
e

C
iM

#
0

0
S
le
ep

st
ag
e

-
-

36

Table XI: Line and file count per file type in the codebase

File type File count Line count Percent of total

Python 25 4270 32.1%

SystemVerilog 26 3779 28.4%

C++ 10 2175 16.4%

TeX 15 1439 10.8%

Shell 20 690 5.2%

Other ¿20 943 7.1%

Total ¿116 13,296 100%

C Appendix: Reflection on Learnings and Experi-

ence Gained

This project has been a significant learning experience for me. I have learned a great

deal about artifical intelligence and the design and implementation of hardware systems.

I’m including this section to formalize my reflections on experience gained, experience I

wasn’t able to gain and what I would have done differently.

C.1 Acquired Experience

Firstly, I gained good knowledge in the basics of artificial intelligence through Andrew

Ng’s Deep Learning Specialization on Coursera and practical experience using Tensor-

Flow. I also reinforced my skills in C++, SystemVerilog and LATEX and was able to use

industry-standard tools such as Synopsys Design Compiler and ARM Artisan IP. I devel-

oped my own local workflow for developing RTL with Verilator, CocoTB and GTKWave,

whose flexibility will be a great asset and enabler in my future projects.

That being said, the largest takeway from this project is a direct appreciation for

the complexity of hardware-software co-design. This project took me from the high-level

frameworks of Python to bit-level arithmetic, FSM and cycle-level parallelism. Through

this, I’ve realized that owning the full-stack is powerful and gives significant design free-

dom to optimize the system. In turn, this can prove destabilizing as essentially all aspects

of the design have compounding pros and cons. It is thus critical to develop flexible, ac-

curate and actionable functional simulations to evaluate different aspects of the design

before committing to a full implementation. I am glad to have done that to some extent

with the C++ model and various Python studies, but, in retrospect, more time should

have been spent desiging and obtaining proxy metrics to determine the ideal high-level

architecture. For instance, I did not need to design the full system before being able to

obtain PPA figures for the memory and compute units. This would have allowed me to

37

make more informed decisions about the architecture and potentially save time in the

long run. However, I think such learning can only be appreciated once an architect goes

through the full design cycle at least once, so I am glad to have had the opportunity to

earn this wisdom early in my career, which I will carry in future projects. I’m realizing

that an informed and complete analysis of a design without necessarily implementing it

is more insightful and impactful than a somewhat underdiscussed but working design

C.2 Topics Warranting Further Exploration

I would have liked to have had more time to explore design synthesis and implementation.

I only managed to make use of Design Compiler and Artisan IP for about six weeks, and

I would have liked to be able to learn more about their different features, optimization

strategies and how to contol them. I would have also liked to have had more time to

explore the impact of different of memory compilation. Finally, this project stopped at

design synthesis. Implementation and post-routing simulations are other areas that I did

not have time to explore.

C.3 Alternative Approaches for Consideration

In my opinion, the three-steps plan presented in Section 4 was a good approach to the

project. However, it was too coarse and I would add two steps: a step between the

model and the functional simulation to translate the model to software-style C++ instead

of hardware-style C++. This allows for easier testing of design choices such as fixed-

point strategies and allows to collect metrics such as exact number of different types of

operations and memory accesses without getting slowed down by hardware-style coding.

The second additional step would be to write the functional simulation from the bottom

up along with coding RTL hardware modules in parallel. This would allow progressively

more precise evaluation of the PPA metrics and provide more time to make architecture

decisions.

38

This page intentionally left blank.

	Introduction
	Problem Statement and Technical Requirements
	Literature Review
	Machine Learning for Sleep Staging
	AI Accelerator Hardware
	Lessons From The Literature

	How to Design an AI Accelerator
	Model Prototyping, Data Processing and Accuracy Measurements
	Accelerator Functional Simulation
	Accelerator Hardware Implementation

	Vision Transformer Model Design
	ASIC Accelerator Architecture
	Centralized vs. Distributed Architecture
	Data and Control Bus
	Master Architecture
	Compute-in-Memory: Architecture
	Compute-in-Memory: Memory
	Compute-in-Memory: Fixed-Point Accuracy
	Compute-in-Memory: Compute Modules
	Adder
	Multiplier
	Divider
	Exponential
	Square Root
	Multiply-Accumulate
	Softmax
	LayerNorm

	Clock Gating
	A Note About Software-Hardware Co-Design

	Results: Evaluation of Performance Metrics
	Model and Hardware Results
	Comparison Against the Coral Edge TPU

	Results Analysis & Future Work
	Vision Transformer Model Improvements
	Accelerator ASIC Improvements

	Conclusion
	References
	Appendix: Bus Operations
	Appendix: Codebase Statistics
	Appendix: Reflection on Learnings and Experience Gained
	Acquired Experience
	Topics Warranting Further Exploration
	Alternative Approaches for Consideration

